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End-Effects in Quasi-TEM Transmission Lines

William J. Getsinger, Life Fellow, IEEE

Abstract— Magnetostatic analysis of a finite-length two-wire
transmission line yields simple closed-form expressions for in-
ductive end-fringing and interaction between ends. A further
argument relates the results to capacitive end effects. Application
to microstrip-like lines, twin-strip line and coplanar waveguide is
outlined. It is demonstrated by explanation and comparison with
the literature that these effects are the dominant discontinuity
elements in short lengths of line, vias, resonators, bends, and other
basic microwave configurations.

I. INTRODUCTION

T THE PRESENT time, most microwave circuit design

activity is carried out with powerful programs based on
circuit theory because of their flexibility of use, their ability
to handle complicated and extensive circuit configurations,
and the rapidity with which complete circuit analyses can
be effected. Such circuit analysis programs are themselves
based in part on simple mathematical descriptions (models)
of a number of basic microwave transmission-line elements
and discontinuities. The most brief and convenient models are
expressed as closed-form algebraic relations. These take little
program or storage space, compute very rapidly, and if derived
from theory. are usually applicable over very wide parameter
ranges.

In this paper, the formula for the external inductance of a
finite length of abruptly ended, two-wire line [1] is derived.
Analysis shows that the formula can be divided into three
simpler closed-form expressions that describe inductance per
unit length, end-effect inductance and interaction inductance
between the ends. A related argument gives similar expressions
for capacitive end-effects. The end-effect elements can be
considered to be localized at the ends of the line and lumped.

A reviewer has brought to the author’s attention the work of
R. W. P. King and K. Tomiyasu [2], who previously developed
a more general theoretical approach, based on electromagnetic
potentials, for the analysis of variously terminated two-wire
lines. A more extensive presentation of the work was published
subsequently by King [3]. These references have corroborated
the expressions for inductive and capacitive end-effects of this
paper, and also have provided a sound theoretical basis for
the derivation of capacitive end-effects. This paper differs
from [2] and [3] not only in the theoretical approach, but
also in introducing the concept of and expressions for end-
interaction inductance. In addition, and of importance for
practical application, this paper shows that the models for the
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two-wire discontinuity elements can be related to widely-used,
modern planar transmission lines. Explanation and compari-
son with published discontinuity data is provided for certain
representative microwave structures. Some applications of the
model are: abruptly terminated microstrip lines, resonators,
vias, ground-wraps, open-ended stubs, right-angle bends, tee-
junctions, hairpin bends and dogleg bends.

In summary, the innovations of this paper are:

1. to analyze the formula for the inductance of a finite two-
wire line in terms of transmission line inductance, end-effect
inductance and end-interaction inductance, realizing simple
closed-form relations for each;

2. to show that there exists a simple relation between the
above inductive elements and corresponding capacitive end-
elements;

3. to show that these end-clements can be applied to
unbalanced microstrip-like lines, and that they characterize the
dominant discontinuity effects in many practical microwave
transmission-line configurations.

II. THE INDUCTIVE MODEL

The external inductance of a pair of parallel wires of finite
length is derived from first principles in the Appendix. The
derivation finds the contribution of one wire of the pair to
the total external inductance of a rectangular loop of wire, as
shown in Fig. 1(a). The horizontal round conductors are the
wires of interest. The vertical end-wires run at right angles to
the conductors of interest, and thus do not couple, except to
each other. They can be considered filamentary, and will be
dropped from further consideration in this work. The notation
used in Fig. 1(a) and the equations of this paper is presented
next.

A is the distance between hypothetical filamentary currents
generating magnetic fields identical to those of a very long
wire pair, external to the wire surface [4].

B is the center-to-center spacing of the round wires. D is
the diameter of the wire.

A= (B*-D*V? (1)
G = B — D, the width of the space between the wires. (2)

S is the length of the wires.

P=(A-G)2 Q=(A+G)/2 3
P and () are convenient parameters used as integration limits.
R=D/2

w = radian frequency
= 0.47 nH/mm
-Mg = 376.73 Ohms/square

0018-9480/93$03.00 © 1993 IEEE
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(a) Sketch of finite-length parallel conductors, (b) Equivalent circuit
of finite-length parallel conductors.

Fig. 1.

The well-known formula for the inductance, L1, of a single
isolated wire falls out of the analysis. It is derived in the
Appendix and given here for subsequent use.

L =(u/2m)S[R/S — (1 + (R/S)2)1/2
+log (14 (14 (R/S))Y?)/(R/3))] @)

The inductive model for the finite-length two-wire line is
shown in Fig. 1(b). It is comprised of three types of inductive
elements: L,, L’ and L”. Observe that these are defined with
respect to a single conductor and centered ground plane (or
electric wall), for simple application to unbalanced lines, such
as microstrip. L,/$ is the familiar inductance per unit length
associated with infinite transmission lines:

Lo = (4/2m)S1n (Q/P) = (1s/27)S cosh™ (B/D).  (5)

This expression is consistent with the literature [4, Table 9.01],
and holds for all wire diameters and spacings L’ is a negative
inductance that is independent of the length of the line, and
therefore, can be associated with the ends of the line. It is
negative to compensate for the reduction of magnetic field
near the ends of the line.

L' = —(p/4m)G = —(u/4m)Q(1 - P/Q) (6)

L' is a positive inductance representing coupling of currents
at the opposite ends of the line. Its value just cancels the value
of L' at zero line length, and rapidly diminishes as }ine length
increases. Thus, it is significant only for very short hpes For
this reason, L” can be considered lumped at the ends of the
line.

L= (u/4r)S
{'1 [1+(1+(P/S)2)1/2}
RN RRRE
L+ QN — (1 + P/} (D)
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Within the limits of his small-diameter approximation,
King’s expression [3, p. 121] for end-inductance agrees with
(6). King does not determine interaction inductance, ",

III. RELATIONS TO OTHER TRANSMISSION LINES

The resuits of this work can be applied to other transmission
lines having physical similarity to two-wire line; of particular
interest, open quasi-TEM lines. Thus, abrupt discontinuities
on twin-strip and open (or highly unbalanced) microstrip-like
lines would be expected to behave much as predicted by this
two-wire line model.

The following relations have been found to relate a specific
microstrip transmission line to the two-wire discontinuity
models:

1. The effective dielectric constant of the model is made the
same as that of the microstrip.

2. The parameter @ is set to twice the microstrip conductor-
to-ground-plane spacing, H. Parameter @ is the distance from
the inner side of one conductor to the location of the equivalent
filamentary current of the other:

Q=2H ®)

3. The characteristic impedance of the model is set equal
to twice that of the microstrip by imposing the appropriate
diameter-to-spacing ratio, D/B, or parameter ratio, P/ Q. It
is well-known that characteristic impedance of a TEM line
is directly related to inductance per unit length, as shown in
(9) in the notation of this paper, with Z,, the characteristic
impedance of an air-filled, unbalanced strip conductor line,
such as microstrip:

Zoa/M0 = (Lo/S)/p ©
Thus, from (5), the value of P is

P = exp (—20Zoa/m0) (10)

Parameters @ and P are now known in terms of microstrip
substrate thickness and characteristic impedance, and so the
microstrip end-effect inductance and interaction inductance
can be found. The important negative inductance, L', (6),
becomes:

L'/H = —0.2(1 — exp(—Zoa/60)) nH/mm.  (11)

Equation (11) should hold for all values of microstrip char-
acteristic impedance, Z,,, to the extent that (8), @ = 2H,
is accurate. Comparison with the literature in a subsequent
section shows that it is sufficiently accurate for practical use
for all W/H up to at least 10, where W is conductor width.
An approximate expression for L’ that holds for all W/H up
to about 2 or 3 (about 3% low at W/H = 2.0) is:

L'/H = -0.2(1 — (W/H)/8) nH/mm. (12)

If interaction inductance, L”, is needed, it is best solved for
in terms of P and Q, as given in (7), using (8) and (10). In
typical cases, L has been found to be less than 10% of —L'
for line lengths greater than about 5 substrate thicknesses.
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IV. THE CAPACITIVE MODEL

For the terminated uniform two-wire line, King [3, p. 68]
derives a generalized propagation constant; that is, propagation
constant as a function of position along the line relative to
the termination. For neither magnetic nor electric coupling
between line and termination, he shows that even as the termi-
nation is approached, the propagation constant does not change
from its fixed, long line value. The following development is
based on this observation; lossless line is assumed.

It is well known that inductance and capacitance per unit
length, L and C, of a TEM line are related to its propagation
velocity, v, by:

LC = 1/v? (13)
For a short length, S, of abruptly terminated TEM line, such
as shown in Fig. 1(a), let L; be the total inductance and C
be the total capacitance. The line is physically uniform over
its length, and so (13) would be expected to hold:

L:Cy = (S/v)* (14)

As shown in the preceding section, for a short unbalanced
line such as microstrip the total inductance can be expressed
in terms of an inductance per unit length, L,/S, and an
inductance, 2(L'+ L"), representing end effects. These will be
designated now as L and L., respectively. Similar capacitive
terms, C' and C., must also exist. Therefore, (14) can be

written as:
(SL+ L) (SC + C.) = (8/v)? (15)

Expanding (15) and solving for end-effect element C, yields:

Ce=—-(L.C/L)/(1+ L./SL) (16)
Returning to the standard notation of this paper;
_ Uy g 2
O/ + O// — [(L + )/ZO] (17)

[1+42(L' + L")/L,]

C" and C” can be separaied by arbitrarily requiring that C’
be independent of line-length and observing that ¢ should
approach zero as the line becomes very

C'=-L')72 (18)
Within the limits of his small-diameter wire approximation.
King’s expression [3, p. 367] for end-capacitance is consistent
with O of (18).

In Fig. 7 of Benedek and Silvester [5], total air-dielectric
microstrip capacitance is normalized against the parallel-plate
capacitance of the strip; the ordinate is given as C;H /e, W S.
Introducing (14) to define C; in terms of L, this quantity is
found to be equivalent to ;15/(W/H)L;. The latter form was
used to calculate the curves of Fig. 2 of this paper, which
shows computations of C; based on (15) and some results
from [5], using the normalized form. This demonstrates that
the total capacitance of a short, abruptly terminated line can
be predicted from its inductance for all aspect ratios.

Application of the capacitive end-effect formula, (18) to
microstrip introduces a new problem. The analysis assumed

Er = 1.0
CH/EoWS NORMALIZED CAPARCITANCE
_______________________ 4
,,,,,,,, g
e
10 .~
-
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Fig. 2. Predicted total capacitance for finite-length microstrip.

homogeneous dielectric, an assumption which for most pur-
poses can be handled by the concept of effective dielectric
constant. For microstrip the effective dielectric constant, e,
experienced by the field determing Z, and propagation veloc-
ity includes the effect of parallel-plate capacitance under the
strip, while the end-effect effective dielectric constant does
not. The end-effect effective dielectric constant, now denoted
e, will be made explicit as follows: (17) and (18) hold for any
homogeneous dielectric, including vacuum; for other substrate
dielectrics, C” and C”' are found from the solutions to those
equations assuming vacuum dielectric, and multiplying by the
end-effect effective dielectric constant, €/,. Thus, (18) becomes:

C' = - I /(Z2e.) (19)

The quantity, dee, is independent of €.. The problem now is
to determine €. A theoretical, but approximate approach (not
given here) to end-effect dielectric constant predicts €/, as:

=1+ Ale, — 1) (20)

where ¢, is the relative dielectric constant of the substrate, and
A = 2log (2)m = 0.4413.

Silvester and Benedek [6] in their Fig. 5 show end-effect
capacitance against W/ H for six substrate dielectric constants
from 1.0 to 51.0. Their curves were computed by electro-
magnetic analysis using numerical techniques. Their end-effect
effective dielectric constants were found to be reasonable fits
to (20), after some adjustment of parameter A. Equation (19)
using (20) with A = 0.387 is plotted in Fig. 3 for ¢, = 1.,9.6,
and 51., and compared with values computed by Silvester and
Benedek [6]. Other work on capacitive end-effect was done
by Itoh, Mitfra and Ward [7], using a different electromagnetic
technique than [6]. Their results for €, = 9.6 are also shown
in Fig. 3. The agreement with these sources is considered
satisfactory corroboration of the capacitive end-effect formulas
for microstrip.

V. THE SHUNT TEE JUNCTION

In a shunt tee-junction, one transmission line is terminated
at right angles on another, continuous line. The following anal-
ysis considers the slightly more general case of an impedance
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connected, but not otherwise coupled, across a continuous
transmission line.

Suppose a lumped impedance, Z, is connected across a
transmission line, as shown in Fig. 4(a). Magnetic coupling
between the line currents on either side of the junction
is required to allow for different currents in the left and
right halves of the connection. It can be accommodated by
postulating inductors, La, with mutual inductance, M, as in
Fig. 4(a).

Let the circuit be divided into left and right halves, and the
halves be very widely separated; then M can be neglected, and
the circuit for each half must be that of an abruptly terminated
line. From the preceding arguments, La must be the negative
element L', of (6), (11) or (12). Next, let the two halves of
the circuit be brought together and rejoined as in Fig. 4(a). A
completely equivalent tee-junction representation is shown in
Fig. 4(b). For Z a very high impedance, the circuit of Fig. 4(b)
must be that of a continuous transmission line. This reguires
the series elements, La-M, of Fig. 4(b) to be zero, and so the
value of M is I/. But La and M are independent of Z. It
can be concluded that the equivalent circuit of a transmission
line across which an impedance is attached involves only the
negative inductance, L’, of the ransmission line in series with
the connected impedance.

The result can be summarized as follows:

*“an otherwise uncoupled impedance connected aross a uni-
form transmission line always incurs a negative inductance
equal to the abrupt-end-inductance, L', of the line.”

As an example, the circuit for a tee-junction comprised of
two transmission lines. A and B, is shown in Fig. 4(c). L'(A)
occurs in consequence of the above statement, and L'(B)
arises because line B is abruptly terminated at line A.

For rigor, it is necessary to state that the line conductors
must be small compared to their spacing, and that impedance
Z must be connected by a very small conductor. These
restrictions can be relaxed, but the price is an uncertainty in
terminal plane locations.

VI. APPLICATIONS

This section describes some possible applications for the
end-effect formulas derived in preceding sections.

669

Fig. 4. (a)-(b) Circuit for transmission line with shunt impedance. (c) Circuit

for transmission line with shunt junction.

Relations of End-Effect Elements to Electrical Length

It is sometimes advantageous to characterize an end-effect as
an increment of line-length, dl. For conventional capacitance
and inductance per unit length, C' and L,dl is given by
C’'/C or L'/ L, as appropriate. Characteristic impedance, Z,,
is usually a more convenient reference; in which case the
above relations become:

dl = cC"(Zoel/?) e,

dl = cL' J(Z,€el'?) (1)

where c is the speed of light in vacuum. and C’ must include
the end-effect effective dielectric constant. C” yields a positive
value for dl, and L' yields a negative dl.

A measure of the interaction between the ends of an abruptly
terminated line is L”/L’, which ranges from 1.0 to 0.0 as
the spacing between ends goes from 0.0 to infinity. For the
microstrip of the preceding paragraph, this measure is 11%
for a strip length of 5 substrate thicknesses, and 2% for a
length of 28 substrate thicknesses.

The Abruptly Terminated Transmission Line

Consider a transmission line abruptly terminated by some
connection to ground; perhaps a resistor. Both end-effect
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elements, L' and C’, may be included in the equivalent circuit,
but a warning is in order: the inductive analysis depended
on having no magnetic coupling between the line and any
other circuit connected at the discontinuity. This required
current flow at right angles; no similar isolating effect occurs
with electric coupling. However, when both inductive and
capacitive end-effects can be included, the approximate input
impedance, Z;,, of the end-circuit terminated by impedance,
Zy, is:
T+ jwC' Z)
This gives the expected values for open- and short-circuit
terminations; for the “matched” termination, Z, = (L'/C")'/2,
the input impedance is Zi, = Z, — 2jw|L’]. Thus, a perfect
Z, termination yields a mismatched line. For a 50-ohm line,
a typical value for 2jw|L/| might be 10-ohms. In actual
practice most terminations introduce a positive inductance that
is greater than |L'|.

(22)

The Via

The via to be considered is a circular cylinder lying between
a microstrip center-conductor and ground, as sketched in Fig.
5(a). Investigation of the via [8] illustrates concepts from the
preceding sections:

First, the impedance presented by a via must include the
negative inductive end-effect, L', whether the via terminates a
line or shunts a continuous line, as argued in the tee-junction
analysis presented above. The inductance of the via is that
of an isolated wire given by (4). However, in order to allow

for the reflection of the via current in the ground plane, it is
necessary to solve (4) using twice the substrate thickness, and
take half the resulting value for the via inductance. The total
inductance of the via circuit is the via inductance plus the
negative end-inductance, L', for the microstrip line, as shown
in Fig. 5(a). Fig. 3. of [8] shows total via circuit inductance as
numerically simulated by an electromagnetic analysis program.
Some of the points from [8] are plotted in Fig. 5(b) and
compared with the analysis of this paper.

Reference [8] does not give specific information on the
widths of the microstrip lines used for the analysis. The writer
assumed on the basis of Fig. 1 of [8], that the microstrip
conductor widths were the same or close to the via diameter
for each case. Also, the square top-pad mentioned in [8] was
ignored in these computations. Despite these approximations,
the agreement between the numerical simulation and the re-
sults of the method of this paper demonstrates the effectiveness
of this method.

The Right Angle Bend

Both arms of the right angle bend, sketched in Fig. 6(a),
have the same conductor width. The bend on microstrip incurs
an L’ for each arm, because the currents in the two arms are not
coupled magnetically. In this theory, a single natural terminal
plane exists at the point on the line at which the abrupt change
in current direction occurs. For a bend of narrow conductors,
the terminal plane can be taken to lie at the center of the
diagonal of the bend. For wider conductors, the requirement
of abrupt redirection of current is not met, and so there is not
a clearly defined terminal plane.

A reasonable estimate for the location of an effective
terminal plane for the bend is made by assuming that the wave
on the line traverses the bend by following the quarter-circle
that joins the centerlines of the two arms. The diameter of the
circle is W, and so the length of the line going around the
bend is 7W/4. Thus, an effective terminal plane can be taken
as lying a distance 71¥/8 from the inner corner for each arm.
This is shown in the equivalent circuit of Fig. 6(a).

The usefulness of this approach is verified by comparison
with other theory [9] and with measurements [10]. Figure 6 of
[10] shows the effective electrical length, 26, designated S, in
this paper, between conventional inner-corner terminal planes
(T of Fig. 6(a)) of unmitred right angle bends for W/H from
about 0.25 to 2.5, as measured and computed. Points from this
graph have been transferred to Fig. 6(b) of this paper, which
also shows results computed by this theory. These computed
results were found from the formula:

— exp (—Zoei/2/60)
Zoei!? /60)

S./H = (x/4)W/H — 2> 23)

The first term is the effective line length discussed above,
and the second term employs (21) with (11) to express the in-
cremental line lengths caused by the negative end inductances.
These computations are based entirely on inductive end-effect;
their agreement with the results of other investigators implies
that the excess discontinuity capacitance is small.
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Fig. 6. (a) Configuration and inductive circuit of right angle bend.
(b) Predicted electrical length of right angle bend.

Hairpin Turns and Dogleg Bends

These configurations are shown in Fig. 7, along with their
equivalent circuit. Each bend is treated as described in the
above section, but it is also necessary to introduce an interac-
tion term, L, at each end of the line joining the bends, if the
line is short; that is, if L is not negligible compared to L'.

Short Circuit in CPW

A short circuit in CPW is illustrated in Fig. 8. This sec-
tion will describe how the expected inductive end-effect can
be evaluated. The theory of this paper cannot be applied
directly to CPW, but can be applied to the complementary
transmission-line [11], twin-strip, which is also illustrated in
Fig. 8 by inter-changing metal and dielectric areas of the CPW.

Suppose the effective dielectric constant, ., width ratio,
a/b, and characteristic impedance, Z.,, of the CPW [12]
are known, and thin conductors assumed. Then, by [11], the
complementary twin strip has the same e, and a/b, and its
characteristic impedance, 7, is:

Zyo =12/ (4€cZep) = 35481/ (ecZcp) (24)

Twin-strip is a two-conductor line that can be related
to the two-wire line analysis of this paper by requiring
the same characteristic impedance and effective dielectric
constant, and specifying a valid relation between their cross-
sectional dimensions. A proven formula for this relation has
not been worked out, but for purposes of illustration, it will
be assumed that the twin strips and the round wires have the
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same distance between center-lines. This should be a close
approximation for high impedance twin-strip (low impedance
CPW), and useful for moderate impedance levels. Employing
the notation used previously for Fig. 8:

B=a+b (25)

With wire spacing, B, defined, wire diameter D) can be
found from (5) using (9), distance G from (2), and negative
inductance, L', from (6). As these are balanced lines, the total
end inductance is 2L’. Being duals of the short-circuited CPW
line, the twin-strip and two-wire line are open-circuited, and
so their end-capacitance will be found. Equation (19) for C’
will do; thus:

Cés = _2L//ths (26)

A final transformation [11] from twin-strip back to CPW gives

the end-effect inductance, L., of the shorted CPW line.

L, (nH) = 35.481C},(pF) /e @7

The above logical procedure can be collapsed into a single
equation for the end-inductance of a CPW short circuit:

L., = (2/m)6oec(a + b) 22,

- (1 —=1/cosh (6072 /(Zepel/?)) (28)

The end-effect inductance for a CPW short is positive, unlike
that of microstrip or twin-strip.

APPENDIX

This appendix outlines the derivation of the inductance of
two parallel conducting cylinders of finite length, as shown
in Fig. 1(a).

It is well known [4] that the magnetic field generated
by currents flowing oppositely along two parallel hollow
conducting cylinders with center to center spacing B, is the
same, external to the cylinders, as that generated by the same
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total currents on two parallel filamentary conductors spaced
by distance A. A and B are related by (1). For mathematical
convenience, such filamentary currents will be assumed for
determining the field in the plane of the conductors. Let one
filament lie along the z-axis from —S/2 to S/2, and both
filaments lie in the z-y plane. The field, dH(z,y), at an
arbitrary point, z,y, generated by current I over a very short
path, dz’, located at z’, is given by Ampere’s law [4, p. 89]:

dH (z,y) = dz'I'sin (0)/(47r?) (A1)

where 7 is the distance between z’ and z, i, and § is the angle
between the line defining r and the z-axis. In terms of 2/,
and y only, (Al) can be written as:

dz’I(y/4n)
(CRETENI

The total field, H(xz,y), caused by the current on the
filament lying along the z-axis is the integral of (A2) with
respect to =’ between the limits —S/2 and S/2. The result is:

_ L[ (@tsp)
10D = 4y s sz 47
s ]
(G- S22 + )17

An expression for the inductance, L, of a closed conducting
loop [4, p. 216] calls for the surface integral of the normal
magnetic flux density over the loop area. For this case, it can
be written as:

L= (p/I) H(z,y)dx dy

surface

dH(z,y) = (A2)

(A3)

(Ad)

The limits for z are from —5/2 to /2, and the limits for
y are from P = (A— B+ D)/2to Q = (A+ B — D)/2 that
is, from the inner sides of the round conductors that define
the loop of interest; there is no field within the conductors).
Using (A3) for H(z,y), the field generated by only one round
conductor, results in an expression for the contribution, L, of
that conductor to the total loop inductance:

orL/p =P — (P? + §%)'/?
+ Slog ((S + (P? + §%)Y/%)/P)
—Q+ (QQ + 52)1/2
— Slog (S + (Q% + $%)'/*)/Q)

The external inductance of a single isolated conductor of
finite length, S, can be found by letting ¢} approach infinity in
(A5); when this is done, P = D/2. This quantity is given as
L1 in (4). The contribution of both round conductors, denoted
Ly, to the total loop inductance is twice the value of L given by

(A5)

(AS). Algebraic manipulation of (AS5) yields the expressions
of interest,

L= 2L, +4L' +4L" (A6)

where expressions for L,, L', and L” are given by (5), (6)
and (7), respectively.
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