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End-Effects in Quasi-TEM Transmission Lines
William J. Getsinger, L@e Fellow, IEEE

Abstract— Magnetostatic analysis of a finite-length two-wire
transmission line yields simple closed-form expressions for in-
ductive end-fringing and interaction between ends. A further
argument relates the results to capacitive end effects. Application
to microstrip-like lines, twin-strip line and coplanar waveguide is
outlined. It is demonstrated by explanation and comparison with

the literature that these effects are the dominant discontinuity

elements in short lengths of line, vias, resonators, bends, and other

basic microwave configurations.

I. INTRODUCTION

A T THE PRESENT time, most microwave circuit design

activity is carried out with powerful programs based on

circuit theory because of their flexibility of use, their ability

to handle complicated and extensive circuit configurations,

and the rapidity with which complete circuit analyses can

be effected. Such circuit analysis programs are themselves

based in part on simple mathematical descriptions (models)

of a number of basic microwave transmission-line elements

and discontinuities. The most brief and convenient models are

expressed as closed-form algebraic relations. These take little

program or storage space, compute very rapidly, and if derived

from theory, are usually applicable over very wide parameter

ranges.

In this paper, the formula for the external inductance of a

finite length of abruptly ended, two-wire line [1] is derived.

Analysis shows that the formula can be divided into three

simpler closed-form expressions that describe inductance per

unit length, end-effect inductance and interaction inductance

between the ends. A related argument gives similar expressions

for capacitive end-effects. The end-effect elements can be

considered to be localized at the ends of the line and lumped.

A reviewer has brought to the author’s attention the work of

R. W, P. King and K. Tomiyasu [2], who previously developed

a more general theoretical approach, based on electromagnetic

potentials, for the analysis of variously terminated two-wire

lines, A more extensive presentation of the work was published

subsequently by King [3], These references have corroborated

the expressions for inductive and capacitive end-effects of this

paper, and also have provided a sound theoretical basis for

the derivation of capacitive end-effects, This paper differs

from [2] and [3] not only in the theoretical approach, but

also in introducing the concept of and expressions for end-

interaction inductance. In addition, and of importance for

practical application, this paper shows that the models for the
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two-wire discontinuity elements can be related to widely-used,

modem planar transmission lines. Explanation and compari-

son with published discontinuity data is provided for certain

representative microwave structures. Some applications of the

model are: abruptly terminated microstrip lines, resonators,

vias, ground-wraps, open-ended stubs, right-angle bends, tee-

junctions, hairpin bends and dogleg bends.

In summary, the innovations of this paper are:

1. to analyze the formula for the inductance of a finite two-

wire line in terms of transmission line inductance, end-effect

inductance and end-interaction inductance, realizing simple

closed-form relations for each;

2. to show that there exists a simple relation between the

above inductive elements and corresponding capacitive end-

elements;

3. to show that these end-elements can be applied to

unbalanced microstrip-like lines, and that they characterize the

dominant discontinuity effects in many practical microwave

transmission-line configurations.

II. THE INDUCTIVE MODEL

The external inductance of a pair of parallel wires of finite

length is derived from first principles in the Appendix. The

derivation finds the contribution of one wire of the pair to

the total external inductance of a rectangular loop of wire, as

shown in Fig. 1(a). The horizontal round conductors are the

wires of interest. The vertical end-wires run at right angles to

the conductors of interest, and thus do not couple, except to

each other. They can be considered filamentary, and will be

dropped from further consideration in this work. The notation

used in Fig. 1(a) and the equations of this paper is presented

next.

A is the distance between hypothetical filamentary currents

generating magnetic fields identical to those of a very long

wire pair, external to the wire surface [4].

1? is the center-to-center spacing of the round wires. D is

the diameter of the wire.

A = (l?z – D2)112 (1)

G = B – D, the width of the space between the wires, (2)

S is the length of the wires.

P = (A – G)/2 Q = (.4 i- G)/2 (3)

P and Q are convenient parameters used as integration limits.

R = D/2

w = radian frequency

~ = 0.47r nH/mm

. q. = 376.73 Ohms/square
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Fig. 1. (a) Sketchof finite-lengthparallel conductors.(b) Equivalentcircuit
of finite-lengthparallel conductors.

The well-known formula for the inductance, LI, of a single

isolated wire falls out of the analysis. It is derived in the

Appendix and given here for subsequent use.

L1 = (w/2~)S[R/S – (1+ (R/S) 2)1/2

+ log ((1+(1+ (R/s) 2)1/2 )/( R/s))] (4)

The inductive model for the finite-length two-wire line is

shown in Fig. l(b). It is cmprisd of three types of inductive

elements: Lo, L’ and L“. Observe that these are defined with

respect to a single conductor and centered ground plane (or

electric wall), for simple application to unbalanced lines, such

as microstrip. Lo/S is the familiar inductance per unit length

associated with infinite transmission lines:

Within the limits of his small-diameter approximation,

King’s expression [3, p. 121] for end-inductance agrees with

(6). King does not determine interaction inductance, L“.

III. RELATIONS TO OTHER TRANSMISSION LINES

The results of this work can be applied to other transmission

lines having physical similarity to two-wire line; of particular

interest, open quasi-TEM lines. Thus, abrupt discontinuities

on twin-strip and open (or highly unbalanced) microstrip-like

lines would be expected to behave much as predicted by this

two-wire line model.

The following relations have been found to relate a specific

microstrip transmission line to the two-wire discontinuity

models:

1. The effective dielectric constant of the model is made the

same as that of the microstrip.

2. The parameter Q is set to twice the microstrip conductor-

to-ground-plane spacing, H. Parameter Q is the distance from

the inner side of one conductor to the location of the equivalent

filamentary current of the othefl

Q=2H (8)

3. The characteristic impedance of the model is set equal

to twice that of the microstrip by imposing the appropriate

diameter-to-spacing ratio, D/B, or parameter ratio, P/Q. It

is well-known that characteristic impedance of a TEM line

is directly related to inductance per tmit length, as shown in

(9) in the notation of this paper, with Zoa the characteristic

impedance of an air-filled, unbalanced strip conductor line,

such as microstrip:

Zm/T)o = (Lo/J$)/P (9)

Thus, from (5), the value of P is

P = exp (–2KZ0./VO) (lo)

Lo = (p/27r)S in (Q/P) = (p/27r)S cosh-l (B/D). (5) Parameters Q and P are now known in terms of microstrip

This expression is consistent with the literature [4, Table 9.011,
substrate thickness and characteristic impedance, and so the

and holds for all wire diameters and spacings L’ is a negative
microstrip end-effect inductance and interaction inductance

inductance that is independent of the length of the line, and
can be found. The important negative inductance, L’, (6),

therefore, can be associated with the ends of the line. It is
becomes:

negative to compensate for the reduction of magnetic field

near the ends of the line.

L’ = –(p/47r)G = –(N/47r)Q(l - p/Q) (6)

L“ is a positive inductance representing coupling of currents

at the opposite ends of the line. Its vahte just cancels the value

of L’ at zero line length, and rapidly diminishes as :&ne length

increases, Thus, it is significant only for very short I@es. For

this reason, L“ can be considered lumped at the enc& of the

L’/H = –0.2(1 – exp.(–Z~~/60)) nH/mm. (11)

Equation (11) should hold for all vahtes of microstrip chara-

cteristic impedance, Zoa, to the extent fiat (8), Q = 2H,

is accurate. Comparison with the literature in a subsequent

section shows that it is sufficiently accurate for practical use

for all W/H up to at least 10, where W’ is conductor width.

An approximate expression for L’ that holds for all W/H Up

to about 2 or 3 (about 3% low at W/H = 2.0) is:

line,
L’/H = –0.2(1 – (W/H) /8) nH/mm. (12)

L = (p/47r)S

{[
. in

1 + (1+ (P/s)y2 1 If interaction inductance, L“, is needed, it is best solved for

1 +(1+ (Q/S) 2)li2 in terms of P and Q, as given in (7), using (8) and (10). In

typical cases, L“ has been found to be less than 10’% of –L’
+( I + (Q/S) 2) ’12 - (1 + (P/s) 2)1i2} (7) for line lengths greater than about 5 substrate thicknesses.
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IV. THE CAPACITIVE MODEL

For the terminated uniform two-wire line, King [3, p. 68]

derives a generalized propagation constant; that is, propagation

constant as a function of position along the line relative to

the termination. For neither magnetic nor electric coupling

between line and termination, he shows that even as the termi-

nation is approached, the propagation constant does not change

from its fixed, long line value. The following development is

based on this observation; lossless line is assumed.

It is well known that inductance and capacitance per unit

length, L and C, of a TEM line are related to its propagation

velocity, w, by:

LC = l/v2 (13)

For a short length, S, of abruptly terminated TEM line, such

as shown in Fig. 1(a), let Lt be the total inductance and G’t

be the total capacitance. The line is physically uniform over

its length, and so (13) would be expected to hold:

LtCt = (s/v)z (14)

As shown in the preceding section, for a short unbalanced

line such as microstrip the total inductance can be expressed

in terms of an inductance per unit length, LO/S, and an

inductance, 2(L’ + L“), representing end effects. These will be

designated now as L and L,, respectively. Similar capacitive

terms, C and C,, must also exist. Therefore, (14) can be

written as:

(SL + LJ(SC + C,) = (S/v)2 (15)

Expanding (15) and solving for end-effect element C, yields:

cc = –(Lef7/L)/(1 + Le/SL) (16)

Returning to the standard notation of this paper;

fy + (y = -[(L’ + L“)/z:]
[1+ 2(L’ + L“)/LO]

(17)

f? and C“ can be separated by arbitrarily requiring that C’
be independent of line-length and observing that C“ should

approach zero as the line becomes very

C’ = –L’/Z~ (18)

Within the limits of his small-diameter wire approximation,

King’s expression [3, p. 367] for end-capacitance is consistent

with C’ of (18).

In Fig. 7 of Benedek and Silvester [5], total air-dielectric

microstrip capacitance is normalized against the parallel-plate

capacitance of the strip; the ordinate is given as CtH/eo W S.

Introducing (14) to define Ct in terms of Lt, this quantity is

found to be equivalent to jLS/ ( W/H) Lt. The latter form was

used to calculate the curves of Fig. 2 of this paper, which

shows computations of Ct based on (15) and some results

from [5], using the normalized form. This demonstrates that

the total capacitance of a short, abruptly terminated line can

be predicted from its inductance for all aspect ratios.

Application of the capacitive end-effect formula, (18) to

microstrip introduces a new problem. The analysis assumed

Er = 1.0
CH/EOklS NORMALIZED CRPRCITHNCE
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Fig. 2. Predicted total capacitance for finite-length microstrip,

homogeneous dielectric, an assumption which for most pur-

poses can be handled by the concept of effective dielectric
constant. For microstrip the effective dielectric constant, ~e,

experienced by the field determing 20 and propagation veloc-

ity includes the effect of parallel-plate capacit~ce under the

strip, while the end-effect effective dielectric constant does

not. The end-effect effective dielectric constant, now denoted

c:, will be made explicit as follows: (17) and (18) hold for any

homogeneous dielectric, including vacuum; for other substrate

dielectrics, C’ and C“ are found from the solutions to those

equations assuming vacuum dielectric, and multiplying by the

end-effect effective dielectric constant, e:. Thus, (18) becomes:

C’ = –e:L’/(Z:qJ (19)

The quantity, Z~ce, is independent of .s., The problem now is

to determine ~~. A theoretical, but approximate approach (not

given here) to end-effect dielectric constant predicts c: as:

C:=l+A(ET–l) (20)

where c. is the relative dielectric constant of the substrate, and

A = 210g (2)7r = 0.4413.

Silvester and Benedek [6] in their Fig. 5 show end-effect

capacitance against W/H for six substrate dielectric constants

from 1.0 to 51.0. Their curves were computed by electro-

magnetic analysis using numerical techniques. Their end-effect

effective dielectric constants were found to be reasonable fits

to (20), after some adjustment of parameter A. Equation (19)

using (20) with A = 0.387 is plotted in Fig. 3 for e, = 1.,9.6,

and 51., and compared with values computed by Silvester and

Benedek [6]. Other work on capacitive end-effect was done

by Itoh, Mittra and Ward [7], using a different electromagnetic

technique than [6]. Their results for e. = 9.6 are also shown

in Fig. 3. The agreement with these sources is considered

satisfactory corroboration of the capacitive end-effect formulas

for microstrip.

V. THE SHUNT TEE JUNCTION

In a shunt tee-junction, one transmission line is terminated

at right angles on another, continuous line. The following anal-

ysis considers the slightly more general case of an impedance
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Fig. 3. Predicted end-capacitance for open ended microstnp.

connected, but not otherwise coupled, across a continuous

transmission line.

Suppose a lumped impedance, Z, is connected across a

transmission line, as shown in Fig. 4(a). Magnetic coupling

between the line currents on either side of the junction

is required to allow for different currents ip the left and

right halves of the connection. It can be accommodated by

postulating inductors, La, with mutual inductance, ill, as in

Fig. 4(a).

Let the circuit be divided into left and right halves, and the

halves be very widely separated; then M can be neglected, and

the circuit for each half must be that of an ab~ptly terminated

line. From the preceding arguments, La must be the negative

element L’, of (6), (11) or (12). Next, let the two halves of

the circuit be brought together and rejoined as in Fig. 4(a). A

completely equivalent tee-junction representation is shown in

Fig. 4(b). For Z a very high impedance, the circuit of Fig. 4(b)

must be that of a continuous transmission line. This requires

the series elements, La-M, of Fig. 4(b) to be zero, and so the

value of ill is L’. But La and M are independent of Z. It

can be concluded that the equivalent circuit of a transmission

line across which w impedance is attached involves only the

negative induct~ce, L’, of the transmission line in series with

the connected impedance.

The result can be summarized as follows:

“an otherwise uncoupled impedance connected aToss a uni-

form transmission line always incurs a negative inductance

equal to the abrupt-end-inductance, L’, of the line.”

As an example, the circuit for a tee-junction comprised of

two transmission lines. A and B, is shown in Fig. 4(c). L’(A)

occurs in consequence of the above statement, and L’(B)

arises because line 1? is abruptly terminated at line A.

For rigor, it is necessary to state that the line conductors

must be small compared to their spacing, and that impedance

Z must be connected by a very small conductor. These

restrictions can be relaxed, but the price

terminal plane locations.

VI. APPLICATIONS

This section describes some possible
end-effect formulas derived in preceding

is an uncertainty in

applications for the

sections.

z

(a)

La-M La-M

T M

z

(b)

“-(’)
\

Line B
(c)

Fig. 4, (a)–(b) Circuit for transmission line with shunt impedance. (c) Circnit
for transmission line with shunt junction.

Relations of End-Effect Elements to Electrical Length

It is sometimes advantageous to characterize an end-effect as

an increment of line-length, dl. For conventional capacitance

and inductance per unit length, C and L, dl is given by

C’ /C or L’/L, as appropriate. Characteristic impedance, Zo,

is usually a more convenient reference; in which case the

above relations become:

where c is the speed of light in vacuum. and C’ must include

the end-effect effective dielectric constant. C’ yields a positive

value for dl, and L! yields a negative dl.

A measure of the interaction between the ends of an abruptly

terminated line is L“/L’, which ranges from 1.0 to 0.0 as

the spacing between ends goes from 0.0 to infinity. For the

microstrip of the preceding paragraph, this measure is 11%

for a strip length of 5 substrate thicknesses, and 2% for a

length of 28 substrate thicknesses.

The Abruptly Terminated Transmission Line

Consider a transmission line abruptly terminated by some

connection to ground; perhaps a resistor. Both end-effect
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Fig. 5. (a) Via configuration and equivalent circuit. (b) Predicted via

elements, L’ and C’, may reincluded inthe equivalent circuit,

but a warning is in ordec the inductive analysis depended

on having no magnetic coupling between the line and any

other circuit connected at the discontinuity. This required

current flow at right angles; no similar isolating effect occurs

with electric coupling. However, when both inductive and

capacitive end-effects can be included, the approximate input

impedance, Zin, of the end-circuit terminated by impedance,

Zt, is:

Zin = (-a+ @~’)
(l+juc’zt)

(22)

This gives the expected values for open- and shofi-circuit

terminations; for the “matched” termination, 20 = (L’/C’) Ifz,

the input impedance is Zin = 20 – 2jwIL’1. Thus, a perfect

20 termination yields a mismatched line. For a 50-ohm line,

a typical value for 2jw IL’ [ might be 10-ohms. In actual

practice most terminations introduce a positive inductance that

is greater than IL’1.

The Via

The via to be considered is a circular cylinder lying between

a microstrip center-conductor and ground, as sketched in Fig.

5(a). Investigation of the via [8] illustrates concepts from the

preceding sections:

First, the impedance presented by a via must include the

negative inductive end-effect, L’, whether the via terminates a

line or shunts a continuous line, as argued in the tee-junction

analysis presented above, The inductance of the via is that

of an isolated wire given by (4). However, in order to allow

for the reflection of the via current in the ground plane, it is

necessary to solve (4) using twice the substrate thickness, and

take half the resulting value for the via inductance. The total

inductance of the via circuit is the via inductance plus the

negative end-inductance, L’, for the microstrip line, as shown

in Fig. 5(a). Fig. 3. of [8] shows total via circuit inductance as

numerically simulated by an electromagnetic analysis program.

Some of the points from [8] are plotted in Fig. 5(b) and

compared with the analysis of this paper.

Reference [8] does not give specific information on the

widths of the microstrip lines used for the analysis. The writer

assumed on the basis of Fig. 1 of [8], that the microstrip

conductor widths were the same or close to the via diameter

for each case. Also, the square top-pad mentioned in [8] was

ignored in these computations. Despite these approximations,

the agreement between ‘the numerical simulation and the re-

sults of the method of this paper demonstrates the effectiveness

of this method.

The Right Angle Bend

Both arms of the right angle bend, sketched in Fig. 6(a),

have the same conductor width. The bend on rnicrostrip incurs

an L’ for each arm, because the currents in the two arms are not

coupled magnetically. In this theory, a single natural terminal

plane exists at the point on the line at which the abrupt change

in current direction occurs. For a bend of narrow conductors,

the terminal plane can be taken to lie at the center of the

diagonal of the bend. For wider conductors, the requirement

of abrupt redirection of current is not met, and so there is not

a clearly defined terminal plane.

A reasonable estimate for the location of an effective

terminal plane for the bend is made by assuming that the wave

on the line traverses the bend by following the quarter-circle

that joins the centerlines of the two arms. The diameter of the

circle is W, and so the length of the line going around the

bend is xlV/4. Thus, an effective terminal plane can be taken

as lying a distance TW/8 from the inner corner for each arm.

This is shown in the equivalent circuit of Fig. 6(a).

The usefulness of this approach is verified by comparison

with other theory [9] and with measurements [10]. Figure 6 of

[10] shows the effective electrical length, 26, designated S. in

this paper, between conventi~nal inner-comer terminal planes

(T of Fig. 6(a)) of unmitred right angle bends for W/n from

about 0.25 to 2.5, as measured and computed. Points from this

graph have been transferred to ‘Fig, 6(b) of this paper, which

also shows results computed by this theory. These computed

results were found from the formula:

S.JH = (7r/4)W/H – 2
1 – exp (–ZOc~i2/60)

(23)
ZOe;j2/60)

The first term is the effective line length discussed above,

and the second term employs (21) with (11) to express the in-

cremental line lengths caused by the negative end inductances.

These computations are based entirely on inductive end-effect;

their agreement with the results of other investigators implies

that the excess discontinuity capacitance is small.
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Fig. 6. (a) Configuration and inductive circuit of right angle bend.

(b) Predicted electrical length of right angle bend.

Hairpin Turns and Dogleg Bends

These configurations are shown in Fig. 7, along with their

equivalent circuit. Each bend is treated as described in the

above section, but it is also necessary to introduce an interac-

tion term, L, at each end of the line joining the bends, if the

line is shofi, that is, if L is not negligible compared to L’.

Short Circuit in CPW

A short circuit in CPW is illustrated in Fig. 8. This sec-

tion will describe how the expected inductive end-effect can

be evaluated. The theory of this paper cannot be applied

directly to CPW, but can be applied to the complementary

transmission-line [11], twin-strip, which is also illustri~ted in

Fig. 8 by inter-changing metal and dielectric areas of the CPW.

Suppose the effective dielectric constant, ee, width ratio,

a/b, and characteristic impedance, Z~P, of the CPW [121

are known, and thin conductors assumed. Then, by [11], the

complementary twin strip has the same C. and a/b, and its

characteristic impedance, .&, is:

2,s = 773/(4e.Z.P) =35 481/(@.p) (24)

Twin-strip is a two-conductor line that can be related

to the two-wire line analysis of this paper by requiring

the same characteristic impedance and effective dielectric

constant, and specifying a valid relation between their cross-

sectional dimensions. A proven formula for this relation has

not been worked out, but for purposes of illustration, it will

be assumed that the twin strips and the round wires have the

Fig. 7. Configuration and circuit for hairpin and dogleg bends.

2,b 2,a

Fig. 8. Configuration of coplanar waveguide short circuit.

same distance between center-lines. This should be a close

approximation for high impedance twin-strip (low impedance

CPW), and useful for moderate impedance levels. Employing

the notation used previously for Fig. 8:

B=a+b (25)

With wire spacing, B, defined, wire diameter D can be

found from (5) using (9), distance G from (2), and negative

inductance, L’, from (6). As these are balanced lines, the total

end inductance is 2L’. Being duals of the short-circuited CPW

line, the twin-strip and two-wire line are open-circuited, and

so their end-capacitance will be found. Equation (19) for C’

will do; thus:

C;. = -2 L’lZt. (26)

A final transformation [11] from twin-strip back to CPW gives

the end-effect inductance, L&, of the shorted Cpw line.

L~P(rtH) = 35.481 C;, (pF)/c. (27)

The above logical procedure can be collapsed into a single

equation for the end-inductance of a CPW short circuit:

L& = (2/n)coee(a + b)Z&

~(1 - l/cosh (607r2/(Z,P&2)) (28)

The end-effect inductance for a CPW short is positive, unlike

that of microstrip or twin-strip.

APPENDIX

This appendix outlines the derivation of the inductance of
two parallel conducting cylinders of finite length, as shown

in Fig. l(a).

It is well known [4] that the magnetic field generated

by currents flowing oppositely along two parallel hollow

conducting cylinders with center to center spacing B, is the

same, external to the cylinders, as that generated by the same
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total currents on two parallel filamentary conductors spaced

by distance A. A and B are related by (1). For mathematical

convenience, such filamentary currents will be assumed for

determining the field in the plane of the conductors. Let one

filament lie along the z-axis from – S/2 to S/2, and both

filaments lie in the z-y plane. The field, d~(z, y), at an

arbitrary point, z, y, generated by current I over a very short

path, ck’, located at z ‘, is given by Ampere’s law [4, p. 89]:

cW(x, y) = d#lsin (6)/( 4m-2) (Al)

where r is the distance between x’ and x, y, and 9 is the angle

between the line defining r and the x-axis. In terms of x’, x

and y only, (A 1) can be written as:

(A2)

The total field, ll(z, y), caused by the current on the

filament lying along the z-axis is the integral of (A2) with

respect to d between the limits –S/2 and S/2. The result is:

I
H(Z> y) = —

[

((x + s/2)

47ry ((x+ s/2)2 + yz)liz

(x - s/2)

–(($ - s/2)2 + yqllz 1
(A3)

An expression for the inductance, L, of a closed conducting

loop [4, p, 216] calls for the surface integral of the normal

magnetic flux density over the loop area. For this case, it can

be written as:

L = (K/1)
J

H(X, y) dxdy (A4)
surface

The limits for x are from –S/2 to S/2, and the limits for

yarefrom P=(A–l?+D)/2to Q= (A+ B–D)/2 that

is, from the inner sides of the round conductors that define

the loop of interes~ there is no field within the conductors).

Using (A3) for If($, y), the field generated by only one round

conductor, results in an expression for the contribution, L, of

that conductor to the total loop inductance:

27rL/,u = P – (P2 + S2)1/2

+ slog ((s+ (P2 + s2)’/2)/P)

– Q + (Q2 + S2)’/2

– Slog ((S+ (Q2 + S2)l/2)/Q) (A5)

The external inductance of a single isolated conductor of

finite length, S, can be found by letting Q approach infinity in

(A5); when this is done, P = D/2. This quantity is given as

L1 in (4). The contribution of both round conductors, denoted

Lt, to the total loop inductance is twice the value of L given by

(A5). Algebraic manipulation of (A5) yields the expressions

of interest,

Lt = 2L0 + 4L’ + 4L” (A6)

where expressions for LO, L’, and L“ are given by (5), (6)

and

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

(7), respectively.
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